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A theoretical model of grain growth in sintering of clustered powder compacts is outlined,
showing that the microstructure evolution is stepwise continuous in time and its general
trends can be predicted independently of the particular system and process being
considered. The dependence of coarsening on densification can be accounted for by
introducing a densification-scaled time variable (intrinsic time). The theory is successively
applied to systems where particular local mechanisms of matter transport are supposed to
operate, respectively in the initial/intermediate and the intermediate/final stage of sintering.
The obtained mathematical models are solved numerically to follow the evolution of three
regularly packed clusters. The model predictions are in good agreement with experimental
data obtained by other researchers. © 2000 Kluwer Academic Publishers

1. Introduction law obeyed by the aggregates may be different from that
Grain growth in porous and non-porous compacts hafor a single cluster. Lange [7] has pointed out peculiar
been largely investigated under many aspects[1, 2]. Thehenomena that can be observed when densification
traditional approach to a quantitative description of theand grain growth inside a single cluster is followed. To
coarsening phenomenon consists in phenomenologicahderstand and to model the basic phenomena which
laws accounting for the evolution of the average grainmay occur in sintering of clustered systems is very im-
size. Usually this parameter is considered to increasportantper se but can also contribute to a more com-
continuously in time according to a law of the type  plete knowledge of the behaviour of systems which are
usually described by phenomenological laws. In fact,
r"—rd =kt —to) (1) size heterogeneities associated with bimodal or multi-
modal distributions or other phenomena which may oc-
wherer, 1, is the average grain size, respectively at thecur during sintering (e.g. neck rupture [8] and particle
beginning of the process (i.e.tat t,, wheretyisanin-  re-arrangement in porous compacts [9], tdedactao
duction time) and at timg k is a rate parametanisan  clusterthe system, and then its average behaviour can be
exponent which, depending on various kinetic aspectsleeply influenced by local evolution in single clusters.
involved in the process, can assume integer values in It is known that grain growth, like densification, is
the range 1to 4 [3]. the result of different local mechanisms of matter dif-
The above law has been adapted to describe graifusion, depending on the considered material, the stage
growth phenomena of several systems with sufficienbf sintering and the sintering temperature [10, 11]. Any
accuracy. In the sintering of porous compacts of crysformulation of a coarsening law which is not merely
talline powders grain growth may accompany densifiphenomenological, must therefore take into account
cation and the two phenomena are expected to be irene or more of such mechanisms. Nevertheless, it is
terrelated [4]. In certain compacts, where the particlepossible that all of these mechanisms of grain growth
size has initially a bimodal or multimodal distribution, have physico-mathematical features in common, which
coarsening may alter the size distribution, so that, to folmay lead to a similar way of operating. It is the aim of
low the evolution of microstructure, more information the present paper to show that this is the case. A sec-
is required than the sole time law for the average grairond aim is to point out which aspects and parameters
size [5, 6]. Inthe case of clustered powder systems quitare expected to depend on the particular system under
often the evolution of average grain size does not reflecstudy and which are in common to all or many different
the evolution of microstructure. In fact, the coarseningsystems.
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In the first part of the paper a theory of grain growth  The rate of exchanged volume is related to the flux
for an arbitrary confined system of sintering particles isof atoms moving from particle ) to particle k) across
derived from rather general hypotheses, showing thain exchange cross-section. Under the hypothesis of in-
the evolution of such a system is discontinuous, througlilependence of the different fluxes eadh_dx/dt can
a number of time intervals corresponding each to annibe calculated as though the two particles were isolated.
hilation of an individual particle or a sort of particles. Integrating the usual flux equation [13] over the ex-
Number of particles, mean and standard deviation othange aredx, the rate of volume change can be writ-
the grain size population are discontinuous functiongen in the form
of time and undergo jumps at the end of each interval. av
Also, individual particles which have been growing in ik _ — ‘

a step, depending on the number and the type of the at KT (Fi. e ) Ak )
connected particles, may begin to become smaller and

some of them, eventually, may disappear in a successiv&herek(T) is a kinetic factor accounting for diffusiv-
step. The dependence of coarsening on densification i§€s and other lattice propertie, is the local driving
accounted for, in that the cross-sectional area througfprce of diffusion, normally with the dimension of a
which matter is exchanged between contacting partisurface energy, and=(ri, r, «) is a function of ge-
cles is a function of system densification. The compli-ometry of the particles, including a shape faetoihe
cation due to a joint action of the two phenomena can b®roductI'¢ ™ (ri, r, «) is proportional to the gradient
conveniently removed by introducing a densification-0f chemical potential between the regions where the
scaled time variabldirftrinsic timé), proper of a given €xchange of matter occurs. For this reagor(ri, r,
system of which densification curves are known. Thex) > 0 whenever; <ry, so that, according to Equa-
theory is successively applied to different grain growthtion 3, at a joint between any two particles the larger
mechanisms, expected to drive matter diffusion both irparticle tends to receive matter from the smaller one.
the initial/intermediate and the intermediate/final stage If the particles are identical\d_. /dt =0; in any

of densification, so arriving at definite mathematicalcase & /dt=—dVi..; /dt. Thus the geometrical
formulations applicable to special problems. Exemplaifunction must obey the following conditions:

solutions of such equations have been obtained numer-

ically for three models of clusters (one bi-dimensional (i) ¢ (i, ri,a) =¢ (k. rk, ) =0

and the others 3-dimensional) where the particles are () o (i) re o) = —o~(fo i, @)

regularly packed and the size heterogeneity is confined ¢ Uit ¢ Uk i, @)
initially to one or two sorts of particles. The study of
the numerical results, which are in accord with the gen . .
eral predictions, permits to conclude about the stepwisgpect to commutation of the variabksr.

evolution of relatively small clusters and to calculate ap—S t;—rn?h?:)ia ﬁfogj[?hzxcgigzi Ct)rl?tsr?(_)srfncatllli)ncﬁar:\mez Svonnh
proximately the duration of the steps in intrinsic time. 9 P ’ Y 9

densification of the whole system. Densification can be
expressed by linear shrinkagg, which is a function

2. Theory of time and will be regarded as a global variable of the
Consider, in general, a network df particles, all of system. Then, in the absence of important sintering in-
approximately the same shape, so that the volume arf@lomogeneities, the exchange area can be expressed in
other geometrical quantities of an individual grain canthe form of a product

be determined by one parameter (called henceforth

equivalent particleadius) with shape factors assumed A = 0T (ri, rx, @)g(eq) 4)

to be the same for the whole system and not signif-

icantly changing in the course of the process. Let thavhere g(sq) is a global process function and
network be formed by, particles of radiusy, nz parti- - *(r;, r, @) is a local function depending on the par-

Accordingly ¢~ (ri, rx, @) is an odd function with re-

cles of radiusy, . .., n; particles of radius;, etc. (with  ticle geometry. Sincé\ is, obviously, independent of
i=1,2,...,m) at a given time, and let each particle the commutation of radiip* (i, r, &) is an even func-
of radiusr; be connected by grain boundaries with  tion. Substituting Equation 4 in Equation 3 and suc-
particles of radiusx (k=1, 2, ..., m, with the possi-  cessively Equation 3 in Equation 2, while taking into

bility for some of the coordination numbeng o_f bein_g account that ¥ = —4rar?dr; a set ofm differential
zero). The total volume change for the particles in  equations for thentime functions; (t) will be obtained,

the unit time will be with the general form
dVI i dVi—>k .
—— == N 2 di_ T L
* =2 LU C) LR
where d/_, /dt is the rate of volume (conventionally (i=12....m (5

positive when emitted) which particle)(exchanges

with particle k). This volume change can be due to sev-wherey(ri, rx, ) =a Lo~ (ri, rx, @)o* (ri, rv, o) is a

eral mechanisms of matter transport: surface diffusionnew function with the same parity @f (ri, rg, «). All
vapour transport, and lattice / grain boundary diffusionfunctions and parameters in Equation 5 have a definite
[12]. sign, say positive, except, the sign of which depends
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on the permutation of the radii but remains definite forvanishes fop = 3. Accordingly, as all other factors in
a fixed permutation. Equation 10 have definite sign, the momenta of order
The complexity of the system makes it impossibleless than 3 decrease in time in the given interval, while
to predict whether an individual particle will grow or the 3rd order momentum is constant, in accord with
become smaller in the course of the process, becaus®lume conservation. In particular, the mean radius
in Equation 5 the summation on the right may includeis decreasing in time in each time interval where the
both positive and negative contributions, depending ortotal number of particles remains constant. The result
the actual size of the neighbouring grains and their evois rather surprising, since the average particle size of a
lution. It is also possible that a particle, which grows coarsening system is expected to increase continuously.
at a given stage of the process, becomes smaller in ldevertheless, is not a continuous function throughout
successive step. the process. In fact, at each time eigenvalue, where a
The total numbemN of particles during the system numbem; of particles disappears (i.e. one of thele-
evolutionis nota constant. Infact the particle which, at acreases continuously to zero), all the momenta defined
giventime instant, is the smallest of all, tends to becomdoy Equation 6 undergo a positive jump through a ratio
smaller and smaller and eventually to disappear, beindN /(N —n;). For this reason the average radius will de-
incorporated in the neighbouring ones. At the instantrease continuously in the intervals between different
t0) when thei-th sort of particles disappearts, will time eigenvalues, but will increase stepwise at the end
decrease by; units. Successively the second smallestof each interval. The final value ofwill be, obviously,
particle or sort of particles will disappear, and so onlarger than the initial one, bringing on a reduction of
until there is only one sort of equal particles left andthe total surface area, as required by thermodynamics.
the process of coarsening comes to an end. This is an As to the standard deviation, which determines the
ideal situation, because inhibiting agents intervene irwidth of the particle size distribution, its behaviour
the coarsening of real systems [14]. At any rate, thewithin the intervals cannot be predicted in general, be-
evolution of the system is characterised by a sanhof causeM, andr? in Equation 7 are both decreasing
intervals separated by time instant$, through which  functions. Neverthelessiif,ax is a value larger than all
the number of particles is progressively reduced. The; in a given time interval, as
t® values form as a bounded set of eigenalues which is
proper of agiven system. In each of these intervals some ‘< r >p—3 ( e )p—s

predictions can be made concerning the behaviour of

the system momenta, which are defined as Fmax

rmax

() (=)
. e . I'max I'max
where p is a positive integer. Note thdl; =r is the
mean radius, A« N M3/3 is the total volume of the sys- . . .

N Ms/ y whenever p<gq, it is possible to establish that

tem (a quantity which is conserved through the whole .
process), andl; is related to the standard deviation IrmaxdM2/dt| <|rf,,dMa/dt|. Correspondingly, the

Mp = N~1s; nirip (6) >

time derivative

by
A= N7IZin(ri —r>=M—r2 () daz _dM, , dVs 1)
. - . : . : da  dt dt
Differentiating Equation 6 with respect to time and in-
troducing Equation 5, one obtains will be surely positive whenever/r max> 1/2. In such
M a case the particle distribution tends to become wider
P _ _r pN~k(T) within the considered time interval. The standard de-
dt 4z viation will itself undergo a jump at the end of each

« Z Z nnir P2y e o) (8) interval. If A" is the value after the jump, we have
i k

A”? N N ’
Taking into account the topological identity (valid for 22 = M2 — N n (M2 —r1%) (12)
alli, k)

9) Studying the condition under which this ratio is less
than unity, one finds that it is absolutely fulfilled pro-
which is self-evident, it is possible to re-write Equa- Vided that the ratioA /r is less or equal than unity,
tion 8 as follows: or else in the case dfi/(N — n;) > A /r. Therefore, it
is possible to conclude that the standard deviation may
dMp, T increase continuously within the single interval, but de-
dt  84r P creases stepwise throughout the whole process, being
y Z Z nn (rip_g _ rkp_g)w(ri’ fea) (10) ;ezré). at the final step, when all particles have the same
The dependence of the average radias the cluster
The productr(jp*3 — rkp*3)1/f(ri , Tk, &) (namely, forany size (i.e. the total number of particleés) can be estab-
ri, rg), is positive for p <3, negative forp>3 and lished by noting that centered moments of unpair order

i k
NN, = Nk
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are always very small. In particular, from the condition by

zini(ri —r)3~0, itis possible to derive the identity P
ik
1+ 3A2 T
Nr3( +r2 ) ~ minird = const  (13)
from where, ifA?/r? « 1, the average radius turns out (\C/ I d
to be proportional taN—%/3. 7,
To solve the set of differential equations (5), the den-

sification law, through whicly depends on time, must

be known. In the special case of normal growth, as oc-

curring in the final stage of sintering of relatively dense

compactsg(eq) is a constant and the solution is sim-

plified. More in general, suppose that the densificatiorfigure 1 Two-particle model for determination of exchange cross-
law is given in the form [15] section in vapour transport.

& = |<d(T)E2 f (q) (14)  the pores, so that grain growth can only occur through
r mechanisms of Ostwald ripening [18] via surface diffu-
sion and/or via vapour transport. The gradient of chemi-

whereX is the driving force for densification, expr . . . : .
erex. isthe d g force for densification, exp essedcal potential which drives such transport mechanisms is

as a sintering stress [1&}(T) is a kinetic factorf (gq)
a rate evolution function andthe particle size, which,

in the present application can be represented by the Optik = 29V5ﬁ(1 _ 1) (18)
average defined above. It is then possible to eliminate d d i Tk
the time variable between Equation 5 and Equation 14, i )
obtaining: where @ is the atomic volume of the transported
species,ys is the surface energy is a shape factor
dr; T r2 k() relating the local radii of curvature of the surface to the
e ==t F(eq) radii of particles, and is the distance of diffusion. The
deq Ar 2 r ky(T) definition of an exchange cross-section depends on the
% an(ri, noa) =12 ...,m) (15) specific transport mechanism. In the case of vapour
- transport, matter is exchanged between regions of the

free surfaces around the neck, to within a separation
where F(eq) = g(eq)/f (¢q). Introducing anintrinsic  distance of the order af. From a simple geometrical

time x of the process through the position: model (Fig. 1) whereg is the neck cross-sectional

radius, and the particle are spheres, one obtains the
dx = F(eq) deg (16)  outer radius of the exchange cross-section from

if the process is isothermal, or if the rak¢T) / kq(T) b2 ~ 2drirk (19)

is a constant, the set of equations can be soindd- )

pendently of the densification histouyith the intrinsic

time as the evolution variable, from: valid for relatively small. In the same approximation,
the model yieldsaaizk = 2¢4rirk. Then the exchange area

dr; I r2Kk(T) can be expressed as

dX 4 rZky(T)

x Y N ree) (1=12...,m (17) .

wheres, =d / (rj +rg) can be regarded approximately

For some systems where densification and grain growtBS & constant. If the transport mechanism is surface

occur simultaneously, it has been proved [17] thatdiffusion, Aj could be conveniently defined as the area

a common thermally activated step exists. In sucHfthe annular cross-section of the neck surface, namely

systems the grain size distribution was shown to be

a function of the apparent sample density and not of Ay ~ 2raids = 2/27 (rir)*?dse > (21)

temperature. This result corresponds to the solution of

Equation 17 whelk(T) / kg(T) = const. whereds is the thickness of the surface layer at the
neck. Note that both Equation 20 and Equation 21 cor-
respond to the general formulation fAy given in the

3. Local laws for grain growth mechanisms foregoing section. It appears from Equation 21 that the

during densification exchange cross-section for vapour transport decreases

3.1. Initial/intermediate densification stage with densification, whereas it is expected to increase if

It is well known that during the initial/intermediate the driving mechanism is surface diffusion. According

stage of sintering grain boundaries are pinned througko the flux equation, the matter flux exchanged by

A = (0B — a2) = 2nrir(eo—ed)  (20)
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vapour transport between two particles is given by  They pointed out that, in a two-particle system, an ex-
cess of vacancies in the grain boundary regions or at
dViok  4drys free surfaces, due to the elastic compliance of the sys-
& d Ke(T)("k = ri)(eo — ) (22)  tem, generates a real tensile membrane strgssthe
boundary, which must be considered insteag,of his
wherek,(T) is the kinetic factor for vapour diffusion, membrane stress is not a constant, but depends on the
which is in general different fromky(T). Corre- geometry of the system. For a two-particle maosglels
spondingly, in any isothermal run the set of evolutionevaluated in the Appendix as a function of the particle
equations turns out to be radii and the sintering stress (Equation A.4). In such a
case, replacingy, with oy, in Equation 27, the boundary

dri  yer?ky(T) nl (rk ) 23) velocity turns out to be

-1
i
k(Y= /(1 1
V= Q— -~ 3 rirk(l— Sd) (28)
which is a special case of Equation 17, wit(r;, ry) = o 2\rf g

rq — ri and where

dx  =d ky(T) 4= i

Calculating the rate of exchanged volumd d i /dt
as the product ofv through the boundary area
mai =2megrir, the volume exchanged by a pair of
particles turns out to be

(€0 — €4)

®= e

deg (24)

defines now the intrinsic time.
dVi_k B ak(T)X

& = g (k—rel-ed (29

3.2. Intermediate/final densification stage heres: b ded as the drivina f ; .
In the intermediate/final densification stage, coarsen/1€ré2 can pe regarded as the driving force for grain
rowth, which, in this case, would be the same as for

ing is a consequence of boundary migration. The grairg

boundary, subjected to a given mean pressyreets d_ensification. Equatior) 29, intrqduced in Equation 2,
into motio,n at a velocity [19] yields the set of evolution equations

_ dr; k(T)Z 12
v=Ap (25) i 2d1 eq(1 — Sd);nk<é — l) (30)

wherev is the mean boundary velocitp, is the mean

pressure on the boundary andis the mobility, i.d. being again a special case of Equation 5 witfr;,
the velocity under unit pressure, which is proportionalrk) =rZ —r? and g(eq) = e4(1 — £q). Eliminating the

to the kinetic factok(T) and inversally proportional time variable through Equation 9 and defining the in-
to the diffusion distancey,. According to Rhines and trinsic timex by Equation 15, Equation 30 becomes:
Graig [20]

dri r2 k(T) T2
p= i (26) &:‘Tdbﬁ;”k(é_) oy

whereyy, is the grain boundary surface tension ané  comparison of Equation 31 with Equation 23 shows

a conveniently defined mean boundary curvature ovejhat the substitution of the concept of surface tension
a given volume of material. When an isolated pair ofyyith that of membrane stress produces a different de-
polyhedrical grainsi{ and k) of different size are con-  nendence on the radii. In fact, the use of Equation 27
sideredy is simply the curvature of the grain boundary, yyouid lead to a set of differential equations where

with the center in the smaller grain. For a pair of spher—w(ri,rk) is the same as in Equation 23. It has been
ical grains of radiri, ri which are in contact through opserved that, for some systems, grain growth and den
a given dihedral angle, the boundary must be tangengification have the same activation energy [17]. In such

for equilibrium, to the bisector of the dihedral angle, 4 case Equation 31 can be furtherly simplified by as-
S0 its curvature is, approximately, the mean of the surgymingk(T) = kq(T).

face curvatures /&; and —2/r. In the final stage of
densification the dominant grain shape is normally that

of a sphere-inscribed polyhedron. In this way the abovey - Geometrical models for numerical solution
conclusion applies, as a reasonable approximation, al§gg. 2 jllustrates three geometrical cluster models (a,

to polyhedrical grains. Accordingly, b, ¢) considered for numerical solutions. The particles
are numbered according to the size they are expected
p~ Vb(i _ i) 27) to assume in the course of the process: particles with
rrg the same number will remain equal in size on account
of symmetry.

In Equation 2%, is a constant depending on the nature  Model (a) is a two-dimensional arrangement of 19
of the grain boundary. This argument was discussedlosed-packed spheres, initially of equal radigisex-
in a previous work [16] by two of the present authors.cept the central sphere which is smaller (with radius
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Figure 2 Models for numerical simulation: model a (2-dN = 19; 18- /

rio=0.9rq; ryp=rzp=ra0=ro model b (3-d): N=27; r10=0.9

lo;T20="Tr30="r40="o; model c (3-d)N =27;r10=0.8rg; r20=0.9r; ; 4
l30=Tl40="r0. o5l " w n 4
[} ]

r1o=0.9r,). At the beginning of the process matter ‘s ooz ook ate 0% o3 o1
will flow from particle (1) to the nearest neighbours (2)

WhiCh, in turn, begin to receive atoms also from sortFigure 3 Evolution of particle radii from numerical simulation (ini-
(3), and so on. Consequently, the initial heterogeneit)}iallintermediate stage of sintering): above model a; beneath model b.
spreads instantly to the whole cluster population. The
symmetry of the system conserves the sorting through- ,
out the process.

Models (b) and (c) represent a 3-d cubic packing
of 27 spheres, respectively with two and with three - 1\—\ﬁ
sorts of initial radii, precisely1,=0.9r, in case (b) ool
andri1,=0.8rq, r2o=0.9r, in case (c). The evolution R y "
of the system proceeds as in the foregoing instance. ¢, e o o o o T2

For each of the three models numerical solutions of .
both Equation 23 (initial/intermediate stage of sinter- - ‘ , , ‘ 1
ing) and Equation 31 (intermediate/final densification ‘ —
setage) were obtained using the Runge-Kutta method -

ni=1234

151 I

under the following positions: - 1-ﬁ'ﬁﬁ
i. The mean radius has been assumed, in a first °% ' . "
approximation, constantly equal ttg; o , . l ‘ .
. . . . [¢] 0.02 0.04 0.08 0.08 01 0.12
ii. the ratior,/dp has been given the value of 100 in x
a”..(.:ases’ . ved in th ial fFigure 4 Evolution of mean particle radius from numerical simulation
M. Equatlon 31 were solved in the special case o (initial/intermediate stage of sintering): above model a; beneath model b.

k(T) =ka(T).

The constant in Equation 23 is difficult to evaluate
without reference to a particular material. A conven-
tional value of 10 has been therefore adopted. The wa

Fig. 4 the corresponding behaviour of the mean radius
r is shown for both models. The evolution of the radii
% quite similar in the 2-d and the 3-d cluster, the latter
being only a bit faster (see valuesin Table I). This

is an indication that, at least in small regular clusters,
the type and dimensionality of particle packing is not
5. Results and discussion expected to have critical influence on the coarsening
Coarsening, as predicted by the general theory, is a stepistory. The mean radius decreases slightly within a
wise phenomenon, each step being terminated whersingle step, but at the end of each step undergoes a pos-
ever a sort of particles is incorporated in a neighbouringtive jump through a ratid\; /(N; — n;) (being N; the
larger sort. The following step is then calculated, elim-total number of particles in the cluster before annichi-
inating the incorporated particles from the cluster andation of thei-th sort), just as predicted by the theory.
assuming as new starting radii of the remaining sorts The influence of the diffusion mechanism can be ob-
the values obtained at the end of the foregoing step. Theerved comparing the plots of Figs 3b, 4b with those
whole process is terminated, in ideal conditions, when @f Fig. 5, simulating the evolution of model (b) in
sole sort of particles is left. The values of intrinsic time the intermediate/final stage of sintering. The values as-
corresponding to the end of these steps form a kind osumed by the radii at the end of each step are nearly
eigenvalue spectrum, which is proper of a given systhe same in both cases. This would imply: more steps,
tem. In Table | the data of numerical calculations aremore coarsening. As the variable is related to the
summarised for all examined models. In Fig. 3, wheredensification of the system, systems which undergo the
the radii of the particles are plotted vs. intrinsic time  same densification would coarsen more when the step
the evolution of models (a) and (b), simulating the be-duration is shorter, while, for the same step duration,
haviour of systems in the initial/intermediate stage ofsystems which densify the more may exhibit the more
sintering due to vapour transport, can be followed. Inof coarsening. The reason for this behaviour is volume

will emerge in the discussion.
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TABLE | Data of numerical simulation

Model a (initial/intermediate stage)

Step number Initial particle size (relativertg) Mean radius Intrinsic time
ri r2 r3 r4 r X
| 0.9 1.0 1.0 1.0 0.975 0.0157
1] 0 1.046 0.994 0.998 1.013 0.0621
1] 1.252 0 1.050 1.157 0.104
v 1.461 0 1.461
Model a (intermediate/final stage)
Step number Initial particle size (relativertg) Mean radius Intrinsic time
ri r2 r3 r4 r X
| 0.9 1.0 1.0 1.0 0.97 0.0036
1] 0 1.048 0.993 0.997 1.01 0.0128
1] 1.264 0 1.033 1.148 0.0197
\Y 1.461 0 1.461
Model b (initial/intermediate stage)
Step number Initial particle size (relativertg) Mean radius Intrinsic time
ri r2 r3 r4 r X
| 0.9 1.0 1.0 1.0 0.975 0.0157
1] 0 1.049 0.993 1.001 1.014 0.0543
1] 1.334 0 1.160 1.247 0.905
\Y, 1.645 0 1.645
Model b (intermediate/final stage)
Step number Initial particle size (relativertg) Mean radius Intrinsic time
ri r2 r3 r4 r X
| 0.9 1.0 1.0 1.0 0.97 0.0036
1] 0 1.053 0.991 1.001 1.015 0.0111
I} 1.342 0 1.152 1.247 0.0167
\Y, 1.645 0 1.645
Model c (initial/intermediate stage)
Step number Initial particle size (relativertg) Mean radius Intrinsic time
ri r2 r3 r4 r X
| 0.8 1.0 0.9 0.9 0.9 0.0076
1] 0 1.067 0.870 0.904 0.947 0.0250
1] 1.280 0 1.021 1.150 0.0470
\Y, 1.520 0 1.520
Model c (intermediate/final stage)
Step number Initial particle size (relativertg) Mean radius Intrinsic time
ri r2 r3 r4 r X
| 0.8 1.0 0.9 0.9 0.9 0.00180
1] 0 1.074 0.864 0.905 0.948 0.00545
1] 1.289 0 1.009 1.149 0.00917
\Y, 1.520 0 1.520
2 . . . o radiusr,, is approximately given by
" /// ; N\ Y3
Sy 4 — & (—) (32)
:f_ ) Ni
05 (21 3 4 9
| . n " . whereN; is the actual number of particles. The grade of
% 0005 001 0015 002 coarsening is, therefore, independent of the mechanism

[ ] m

I I L L
0 0.005 0.01 0.015 0.02
X

Figure 5 Evolution of particle radii (above) and of mean radius (be-

neath) from numerical simulation (intermediate/final stage of sintering):

model b.

of grain growth, but is determined exclusively by the
initial cluster microstructure.

On the opposite, it is the duration of the single step
that is influenced by the process, as indicated by the
plots. As the constants in the differential equations are
in some way arbitrary, it is important to investigate
this dependence analytically. In all examined models,
within the single step, where coarsening is continuous,
one of the particle radii decays dramatically to zero,
while the increase of the remaining radii is rather slow
(Figs 3 and 5). Then the eigenvalye corresponding
to the instant when the particles of theh sort dis-

conservation. In fact, on account of Equation 13, theappear, can be calculated, as a first approximation by
grade of coarsening of a cluster of given compositionintegrating Equation 17 in the hypothesis that, during
and size, expressed as the ratio of the average raditise considered step, the only changing radiugs ishile

r at a given step of the process to the initial averagehe other radii remain constant and equal to the mean
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radiusr. Such an integration yields, in general respondingly, an aggregate of moderately larger grains,
all of one size. Onthe opposite, cluster heterogeneity (as
4nr T ky(T) [ 62do (33) resulting, e.g., from inadequate powder mixing) tends
>, n{( k(T) Jo v(0) to spread coarsening from a cluster to another, leading
. . to an increased heterogeneity of the sintered compact,
whereg =r;/r andé; =r " /r beingr! "Pthe value as well as to a larger mean particle size. A promising
of ri at the beginning of the step (or at the end ofmethod to reduce the negative effects of coarsening in
the foregoing step). The summation= Zxn is sim-  a large aggregate, is employing agglomerate powders.
ply the number of contacts of each particle of theThe available technology (spray drying, etc.) permits
i-th sort. In the simulation of grain growth in the to obtain agglomerates with very narrow size distribu-
initial/intermediate stage of sintering/(¢/) =1 — ),  tions. The presence of small size grains inside a single

Xi = Xi-1+

the resultis: aggregate enhances densification, while clustering re-
sd k(T 1 02 duces coarsening for the reasons said above. Such con-
% = X_1 4 ka(T) In( ) g - clusions are confirmed in a study by Lange [7], who
ysvi ky(T) 1-6 2 followed the microstructure evolution of a pair of ZrO

34 single crystals and of two polycrystalline Zf3Y,03
(34) particles of approximately the same size, at a tempera-
while, in the simulation for the intermediate/final stage, ture of 1400C for 12 hours. The behaviour of the two

wherey (9) = 1 — 62, one obtains samples is quite different. The single-crystal particles
undergo relatively small center approach and growth. In
4d,T1 1+ 6 the polycrystalline pair densification of the micrograins
X =Xi-1+ o [5 '”(m) - Qi} (35)  |eads to a nearly complete center approach between the

two particles after 12 h, while coarsening remains con-

Applying Equation 35 to model (b) and assuming for fined to within the clusters. Moreover, if the evolution
simplicity 6 ~r10/ro=0.9 for all steps, the values of the interior grains is followed, some grains are found

x1 = 0.0038, X, = 0.0095, x3 = 0.0181 are calculated to disappear, while others grow in the iniital stage (from

which represent a reasonable approximation to the ex3-3 hto 4 h) and become smallerinthe final stage, asitis
act solution (Table 1). Application to model (c) with the case e.qg. for particle 3 in all the models (see Table |
6, =0.8 for the first step andj =0.9 for the suc- and Figs 3 and 5). Also, the ratio of final to initial radii
cessive steps, would yielg; = 0.0020, x, = 0.0077, of grains undergoing co'ar.sening (about 1.5-2) can be
x3=0.0153, in excess with respect to the numericaPom_pared W|th_the predictions of the present model, as
solution (Table 1); assuming = 0.8 for all steps a bet- 2PPplied to relatively small clusters. y
ter estimation is obtainedk{ = 0.0020, x, = 0.0050, Con_cernlng f[he validity of semi-empirical laws as
xs = 0.0090), an indication that in a multi-particle sys- Equation 1, it is clear from the plots of the average
tem the ratio of smallest to largest radius tends to drivé@dii (Fig. 4) that such laws are not adequate to de-
the evolution independently of size of the other parti-SCribe the behaviour of small clusters. In larger sys-
cles. Analogous conclusions apply also to the Ostwald€MS, however, where the number of steps may be very
ripening simulation. _hlgh and all steps have in the mean the same duratlon,
Following these results and according to Equationd! IS reasonable to suppose that the number of parti-

34 and 35, three parameters are expected to influen@eS SUrviving a given step is inversally proportional
the duration of the coarsening steps: to the elapsed intrinsic time (plus an initial constant

, . _ . _ Xo related to the initial particle number). Then, from
_i. the mean particle size of the cluster; in particular, gqation 32, the average radius would be proportional
a fine-grained compact will undergo slower coarsening,, (X + Xo) /3, independently of the mechanism of grain

than a coarser aggregate, while densification is faSteﬁrowth. In such a case the features of the process will

this is true also of Ostwald ripening, becadsés Nor-  getermine the true dependence oh real time through
mql_ly mversely_ prqportlonal to [15, 16]; . the correspondence of Equation 16.
ii. the coordination number; a porous compact, with

low coordination numbers, will coarsen more slowly
than a dense compact; 6. Conclusions
iii. the ratio of smallest to largest radius, which plays In coarsening of particle clusters, there are:

in this way the role of an order parameter of the system; i. aspects which depend only on the microstruc-

E?nanop da;tsdi\g{:ir;)J\{;gﬁspr?qrgdi;;ge?:sr:?rlétlrogsi d?r mg]nture of the system (i.e. particle shape, size composition,
y pialy topological parameters, etc.);
homogeneous systems.

ii. apects which are influenced by the local mecha-

The behaviour of an aggregate of clusters is, obvi-][;fargsr?f diffusion which drive grain growth and densi-

ously, more complicate than that of a single cluster. In
the ideal situation of an aggregate of identical clusters,
coarsening would occur inside the single cluster, but
would stop at the cluster boundaries, because the pa?—re'

ticles in contact there, being always of the same size, i.1. the process has a stepwise evolution, determined
cannot exchange matter. The final result would be, corby the disappearing of the particles which are at each

The aspects which depend only on the microstructure

6012



b))
Oop X —

= (A.4)

step the smallest, the number of steps being fixed bgubstituting Equation A.2 and A.3in Equation A.1, one
ously through any step where the total number of parti-
i.3. the standard deviation of the size popuIationdepends on the geometry of the contacting particles.
i.4. the average particle radius is (approximately) in-than unity.
The duration of the steps depends on both microstrucAcknowledgements
defined as the ratio of the largest to the smallest grainigzato Materiali Speciali per Tecnologie Avanzate |l

the initial microstructure; obtains

1 1

<—_ + —)rirk(l — &q)

cles is conserved and undergoes a positive jump at the i Tk
may increase continuously within a single step, but deTpe dependence af, on the degree of densification
versely proportional to the cubic root of the total num-
tural parameters (average particle radius, coordinatiodhe research was financially supported by National
and on the diffusion mechanisms whereby densificatiorf he authors are indebted to R. Botter for valuable

i.2. the average particle radius decreases continu-
end of each step; which shows how the grain boundary membrane stress
creases at the end of each step; is practically negligible, as normally is much lower
ber of particles present in the cluster.
number of smallest particles, and an order parametdgouncil of Research (CNR) under grétrogetto Final-
and grain growth are produced, namely contributions to discussion.

ii.1. on the ratio between the driving forces of, re-

spectively, the densification and the grain growth mechReferences

anism; 1.
ii.2. on the ratio between the kinetic factors of the 2.
two diffusion mechanisms
iii.3. on the ratio between the kinetic functions of >
densification and grain growth, which scales the intrin- ,
sic time.

5.

Appendix 6

For a model of two spherical particles of radii ry
connected by a circular grain boundary of radigsthe
boundary membrane stregswas shown to be related
to the the mean compressive stré&sacting on the
boundary (assumed as thiatering stresp[16] by

~sin(Bi + B)
k 2 sing; sin B
whereg;, Bk are the two parts into which the dihedral ﬁ
angle at the neck is divided by the contact plane, so thats.
aik =T SinBj =r sin .

The linear shrinkage associated with densification is-6:
(in absolute value) 1

_ {ri(d — cosBi) + r(1 — cosBy)}
&d =
(ri +rx)

and, for relatively smalky, can be approximated by »q.
eq~0.5a3 /rirx. To the same order of approximation,

Sin(s + ) ~ (% T %>( ) (A3)

Fi Mk

8.
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10.
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op =X

18.
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