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A theoretical model of grain growth in sintering of clustered powder compacts is outlined,
showing that the microstructure evolution is stepwise continuous in time and its general
trends can be predicted independently of the particular system and process being
considered. The dependence of coarsening on densification can be accounted for by
introducing a densification-scaled time variable (intrinsic time). The theory is successively
applied to systems where particular local mechanisms of matter transport are supposed to
operate, respectively in the initial/intermediate and the intermediate/final stage of sintering.
The obtained mathematical models are solved numerically to follow the evolution of three
regularly packed clusters. The model predictions are in good agreement with experimental
data obtained by other researchers. C© 2000 Kluwer Academic Publishers

1. Introduction
Grain growth in porous and non-porous compacts has
been largely investigated under many aspects [1, 2]. The
traditional approach to a quantitative description of the
coarsening phenomenon consists in phenomenological
laws accounting for the evolution of the average grain
size. Usually this parameter is considered to increase
continuously in time according to a law of the type

r n − r n
o = k(t − to) (1)

wherer , ro is the average grain size, respectively at the
beginning of the process (i.e. att = to, whereto is an in-
duction time) and at timet , k is a rate parameter,n is an
exponent which, depending on various kinetic aspects
involved in the process, can assume integer values in
the range 1 to 4 [3].

The above law has been adapted to describe grain
growth phenomena of several systems with sufficient
accuracy. In the sintering of porous compacts of crys-
talline powders grain growth may accompany densifi-
cation and the two phenomena are expected to be in-
terrelated [4]. In certain compacts, where the particle
size has initially a bimodal or multimodal distribution,
coarsening may alter the size distribution, so that, to fol-
low the evolution of microstructure, more information
is required than the sole time law for the average grain
size [5, 6]. In the case of clustered powder systems quite
often the evolution of average grain size does not reflect
the evolution of microstructure. In fact, the coarsening

law obeyed by the aggregates may be different from that
for a single cluster. Lange [7] has pointed out peculiar
phenomena that can be observed when densification
and grain growth inside a single cluster is followed. To
understand and to model the basic phenomena which
may occur in sintering of clustered systems is very im-
portantper se, but can also contribute to a more com-
plete knowledge of the behaviour of systems which are
usually described by phenomenological laws. In fact,
size heterogeneities associated with bimodal or multi-
modal distributions or other phenomena which may oc-
cur during sintering (e.g. neck rupture [8] and particle
re-arrangement in porous compacts [9], tendde factoto
cluster the system, and then its average behaviour can be
deeply influenced by local evolution in single clusters.

It is known that grain growth, like densification, is
the result of different local mechanisms of matter dif-
fusion, depending on the considered material, the stage
of sintering and the sintering temperature [10, 11]. Any
formulation of a coarsening law which is not merely
phenomenological, must therefore take into account
one or more of such mechanisms. Nevertheless, it is
possible that all of these mechanisms of grain growth
have physico-mathematical features in common, which
may lead to a similar way of operating. It is the aim of
the present paper to show that this is the case. A sec-
ond aim is to point out which aspects and parameters
are expected to depend on the particular system under
study and which are in common to all or many different
systems.
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In the first part of the paper a theory of grain growth
for an arbitrary confined system of sintering particles is
derived from rather general hypotheses, showing that
the evolution of such a system is discontinuous, through
a number of time intervals corresponding each to anni-
hilation of an individual particle or a sort of particles.
Number of particles, mean and standard deviation of
the grain size population are discontinuous functions
of time and undergo jumps at the end of each interval.
Also, individual particles which have been growing in
a step, depending on the number and the type of the
connected particles, may begin to become smaller and
some of them, eventually, may disappear in a successive
step. The dependence of coarsening on densification is
accounted for, in that the cross-sectional area through
which matter is exchanged between contacting parti-
cles is a function of system densification. The compli-
cation due to a joint action of the two phenomena can be
conveniently removed by introducing a densification-
scaled time variable (intrinsic time), proper of a given
system of which densification curves are known. The
theory is successively applied to different grain growth
mechanisms, expected to drive matter diffusion both in
the initial/intermediate and the intermediate/final stage
of densification, so arriving at definite mathematical
formulations applicable to special problems. Exemplar
solutions of such equations have been obtained numer-
ically for three models of clusters (one bi-dimensional
and the others 3-dimensional) where the particles are
regularly packed and the size heterogeneity is confined
initially to one or two sorts of particles. The study of
the numerical results, which are in accord with the gen-
eral predictions, permits to conclude about the stepwise
evolution of relatively small clusters and to calculate ap-
proximately the duration of the steps in intrinsic time.

2. Theory
Consider, in general, a network ofN particles, all of
approximately the same shape, so that the volume and
other geometrical quantities of an individual grain can
be determined by one parameter (called henceforth
equivalent particleradius) with shape factors assumed
to be the same for the whole system and not signif-
icantly changing in the course of the process. Let the
network be formed byn1 particles of radiusr1, n2 parti-
cles of radiusr2, . . . ,ni particles of radiusri , etc. (with
i = 1, 2, . . . ,m) at a given time, and let each particle
of radiusri be connected by grain boundaries withni

k
particles of radiusrk (k= 1, 2, . . . ,m, with the possi-
bility for some of the coordination numbersni

k of being
zero). The total volume change for theni particles in
the unit time will be

dVi

dt
= −

∑
k

ni
k

dVi→k

dt
(2)

where dVi→k /dt is the rate of volume (conventionally
positive when emitted) which particle (i ) exchanges
with particle (k). This volume change can be due to sev-
eral mechanisms of matter transport: surface diffusion,
vapour transport, and lattice / grain boundary diffusion
[12].

The rate of exchanged volume is related to the flux
of atoms moving from particle (i ) to particle (k) across
an exchange cross-section. Under the hypothesis of in-
dependence of the different fluxes each dVi→k/dt can
be calculated as though the two particles were isolated.

Integrating the usual flux equation [13] over the ex-
change areaAik , the rate of volume change can be writ-
ten in the form

dVi→k

dt
= k(T)0ϕ−(ri , rk, α)Aik (3)

wherek(T) is a kinetic factor accounting for diffusiv-
ities and other lattice properties,0 is the local driving
force of diffusion, normally with the dimension of a
surface energy, andϕ−(ri , rk, α) is a function of ge-
ometry of the particles, including a shape factorα. The
product0ϕ−(ri , rk, α) is proportional to the gradient
of chemical potential between the regions where the
exchange of matter occurs. For this reasonϕ−(ri , rk,
α)> 0 wheneverri < rk, so that, according to Equa-
tion 3, at a joint between any two particles the larger
particle tends to receive matter from the smaller one.

If the particles are identical dVi→k /dt = 0; in any
case dVi→k /dt =−dVk→i /dt . Thus the geometrical
function must obey the following conditions:

(i) ϕ−(ri , ri , α) = ϕ−(rk, rk, α) = 0

(ii) ϕ−(ri , rk, α) = −ϕ−(rk, ri , α).

Accordingly ϕ−(ri , rk, α) is an odd function with re-
spect to commutation of the variablesri , rk.

The area of the exchange cross-section is not a con-
stant throughout the process, but normally changes with
densification of the whole system. Densification can be
expressed by linear shrinkageεd, which is a function
of time and will be regarded as a global variable of the
system. Then, in the absence of important sintering in-
homogeneities, the exchange area can be expressed in
the form of a product

Aik = ϕ+(ri , rk, α)g(εd) (4)

where g(εd) is a global process function and
ϕ+(ri , rk, α) is a local function depending on the par-
ticle geometry. SinceAik is, obviously, independent of
the commutation of radii,ϕ+(ri , rk, α) is an even func-
tion. Substituting Equation 4 in Equation 3 and suc-
cessively Equation 3 in Equation 2, while taking into
account that dVi =−4παr 2

i dri a set ofm differential
equations for them time functionsri (t) will be obtained,
with the general form

dri

dt
= − 0

4πr 2
i

k(T)g(εd)
∑

k

ni
kψ(ri , rk, α)

(i = 1, 2, . . . ,m) (5)

whereψ(ri , rk, α)=α−1ϕ−(ri , rk, α)ϕ+(ri , rk, α) is a
new function with the same parity ofϕ−(ri , rk, α). All
functions and parameters in Equation 5 have a definite
sign, say positive, exceptψ , the sign of which depends
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on the permutation of the radii but remains definite for
a fixed permutation.

The complexity of the system makes it impossible
to predict whether an individual particle will grow or
become smaller in the course of the process, because
in Equation 5 the summation on the right may include
both positive and negative contributions, depending on
the actual size of the neighbouring grains and their evo-
lution. It is also possible that a particle, which grows
at a given stage of the process, becomes smaller in a
successive step.

The total numberN of particles during the system
evolution is not a constant. In fact the particle which, at a
given time instant, is the smallest of all, tends to become
smaller and smaller and eventually to disappear, being
incorporated in the neighbouring ones. At the instant
t (i ) when thei -th sort of particles disappears,N will
decrease byni units. Successively the second smallest
particle or sort of particles will disappear, and so on
until there is only one sort of equal particles left and
the process of coarsening comes to an end. This is an
ideal situation, because inhibiting agents intervene in
the coarsening of real systems [14]. At any rate, the
evolution of the system is characterised by a set ofm
intervals separated by time instantst (i ), through which
the number of particles is progressively reduced. The
t (i ) values form as a bounded set of eigenalues which is
proper of a given system. In each of these intervals some
predictions can be made concerning the behaviour of
the system momenta, which are defined as

Mp = N−16i ni r
p
i (6)

where p is a positive integer. Note thatM1= r is the
mean radius, 4παN M3/3 is the total volume of the sys-
tem (a quantity which is conserved through the whole
process), andM2 is related to the standard deviation1
by

12 = N−16i ni (ri − r )2 = M2− r 2 (7)

Differentiating Equation 6 with respect to time and in-
troducing Equation 5, one obtains

dMp

dt
= − 0

4π
pN−1k(T)

×
∑

i

∑
k

ni n
i
kr

p−3
i ψ(ri , rk, α) (8)

Taking into account the topological identity (valid for
all i , k)

ni n
i
k = nknk

i (9)

which is self-evident, it is possible to re-write Equa-
tion 8 as follows:

dMp

dt
= − 0

84π
pN−1k(T)

×
∑

i

∑
k

ni n
i
k

(
r p−3

i − r p−3
k

)
ψ(ri , rk, α) (10)

The product (r p−3
i − r p−3

k )ψ(ri , rk, α) (namely, for any
ri , rk), is positive for p< 3, negative forp> 3 and

vanishes forp= 3. Accordingly, as all other factors in
Equation 10 have definite sign, the momenta of order
less than 3 decrease in time in the given interval, while
the 3rd order momentum is constant, in accord with
volume conservation. In particular, the mean radiusr
is decreasing in time in each time interval where the
total number of particles remains constant. The result
is rather surprising, since the average particle size of a
coarsening system is expected to increase continuously.
Nevertheless,r is not a continuous function throughout
the process. In fact, at each time eigenvalue, where a
numberni of particles disappears (i.e. one of theri de-
creases continuously to zero), all the momenta defined
by Equation 6 undergo a positive jump through a ratio
N/(N−ni ). For this reason the average radius will de-
crease continuously in the intervals between different
time eigenvalues, but will increase stepwise at the end
of each interval. The final value ofr will be, obviously,
larger than the initial one, bringing on a reduction of
the total surface area, as required by thermodynamics.

As to the standard deviation, which determines the
width of the particle size distribution, its behaviour
within the intervals cannot be predicted in general, be-
causeM2 and r 2 in Equation 7 are both decreasing
functions. Nevertheless ifrmax is a value larger than all
ri in a given time interval, as∣∣∣∣∣

(
ri

rmax

)p−3

−
(

rk

rmax

)p−3
∣∣∣∣∣

>

∣∣∣∣∣
(

ri

rmax

)q−3

−
(

rk

rmax

)q−3
∣∣∣∣∣

whenever p<q, it is possible to establish that
|rmaxdM2/dt |< |r 2

maxdM1/dt |. Correspondingly, the
time derivative

d12

dt
= dM2

dt
− 2r

dM1

dt
(11)

will be surely positive wheneverr/rmax> 1/2. In such
a case the particle distribution tends to become wider
within the considered time interval. The standard de-
viation will itself undergo a jump at the end of each
interval. If1′ is the value after the jump, we have

1′2

12
= N

N − ni

(
M2− N

N − ni
r 2
)/(

M2− r 2) (12)

Studying the condition under which this ratio is less
than unity, one finds that it is absolutely fulfilled pro-
vided that the ratio1/r is less or equal than unity,
or else in the case ofN/(N− ni )>1/r . Therefore, it
is possible to conclude that the standard deviation may
increase continuously within the single interval, but de-
creases stepwise throughout the whole process, being
zero at the final step, when all particles have the same
size.

The dependence of the average radiusr on the cluster
size (i.e. the total number of particles,N) can be estab-
lished by noting that centered moments of unpair order
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are always very small. In particular, from the condition
6i ni (ri − r )3≈ 0, it is possible to derive the identity

Nr3

(
1+ 312

r 2

)
≈ 6i ni r

3
i = const (13)

from where, if12/r 2¿ 1, the average radius turns out
to be proportional toN−1/3.

To solve the set of differential equations (5), the den-
sification law, through whichεd depends on time, must
be known. In the special case of normal growth, as oc-
curring in the final stage of sintering of relatively dense
compacts,g(εd) is a constant and the solution is sim-
plified. More in general, suppose that the densification
law is given in the form [15]

ε̇d = kd(T)
6

r 2
f (εd) (14)

where6 is the driving force for densification, expressed
as a sintering stress [16],kd(T) is a kinetic factor,f (εd)
a rate evolution function andr the particle size, which,
in the present application can be represented by the
average defined above. It is then possible to eliminate
the time variable between Equation 5 and Equation 14,
obtaining:

dri

dεd
= − 0

4π6

r 2

r 2
i

k(T)

kd(T)
F(εd)

×
∑

k

ni
kψ(ri , rk, α) (1= 1, 2, . . . ,m) (15)

where F(εd)= g(εd)/ f (εd). Introducing anintrinsic
time xof the process through the position:

dx = F(εd) dεd (16)

if the process is isothermal, or if the ratiok(T) / kd(T)
is a constant, the set of equations can be solvedinde-
pendently of the densification history, with the intrinsic
time as the evolution variable, from:

dri

dx
= − 0

4π6

r 2

r 2
i

k(T)

kd(T)

×
∑

k
ni

kψ(ri , rk, α) (1= 1, 2, . . . ,m) (17)

For some systems where densification and grain growth
occur simultaneously, it has been proved [17] that
a common thermally activated step exists. In such
systems the grain size distribution was shown to be
a function of the apparent sample density and not of
temperature. This result corresponds to the solution of
Equation 17 whenk(T) / kd(T)= const.

3. Local laws for grain growth mechanisms
during densification

3.1. Initial / intermediate densification stage
It is well known that during the initial/intermediate
stage of sintering grain boundaries are pinned through

Figure 1 Two-particle model for determination of exchange cross-
section in vapour transport.

the pores, so that grain growth can only occur through
mechanisms of Ostwald ripening [18] via surface diffu-
sion and/or via vapour transport. The gradient of chemi-
cal potential which drives such transport mechanisms is

δµik

d
= 2Äγs

d
β

(
1

ri
− 1

rk

)
(18)

where Ä is the atomic volume of the transported
species,γs is the surface energy,β is a shape factor
relating the local radii of curvature of the surface to the
radii of particles, andd is the distance of diffusion. The
definition of an exchange cross-section depends on the
specific transport mechanism. In the case of vapour
transport, matter is exchanged between regions of the
free surfaces around the neck, to within a separation
distance of the order ofd. From a simple geometrical
model (Fig. 1) whereaik is the neck cross-sectional
radius, and the particle are spheres, one obtains the
outer radius of the exchange cross-section from

b2
ik ≈

2dri rk

(ri + rk)
(19)

valid for relatively smalld. In the same approximation,
the model yieldsa2

ik = 2εdri rk. Then the exchange area
can be expressed as

Aik = π
(
b2

ik − a2
ik

) = 2πri rk(εo− εd) (20)

whereεo= d / (ri + rk) can be regarded approximately
as a constant. If the transport mechanism is surface
diffusion, Aik could be conveniently defined as the area
of the annular cross-section of the neck surface, namely

Aik ≈ 2πaikds = 2
√

2π (ri rk)1/2dsε
1/2
d (21)

whereds is the thickness of the surface layer at the
neck. Note that both Equation 20 and Equation 21 cor-
respond to the general formulation forAik given in the
foregoing section. It appears from Equation 21 that the
exchange cross-section for vapour transport decreases
with densification, whereas it is expected to increase if
the driving mechanism is surface diffusion. According
to the flux equation, the matter flux exchanged by
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vapour transport between two particles is given by

dVi→k

dt
= 4πγs

d
kv(T)(rk − ri )(εo− εd) (22)

wherekv(T) is the kinetic factor for vapour diffusion,
which is in general different fromkd(T). Corre-
spondingly, in any isothermal run the set of evolution
equations turns out to be

dri

dx
= γsr 2

6d

kv(T)

kd(T)

∑
k

ni
k

ri

(
rk

ri
− 1

)
(23)

which is a special case of Equation 17, withψ(ri , rk)=
rk − ri and where

dx = (εo− εd)

f (εd)
dεd (24)

defines now the intrinsic time.

3.2. Intermediate/final densification stage
In the intermediate/final densification stage, coarsen-
ing is a consequence of boundary migration. The grain
boundary, subjected to a given mean pressurep, sets
into motion at a velocity [19]

v = λp (25)

wherev is the mean boundary velocity,p is the mean
pressure on the boundary andλ is the mobility, i.d.
the velocity under unit pressure, which is proportional
to the kinetic factork(T) and inversally proportional
to the diffusion distancedb. According to Rhines and
Graig [20]

p = γb κ (26)

whereγb is the grain boundary surface tension andκ is
a conveniently defined mean boundary curvature over
a given volume of material. When an isolated pair of
polyhedrical grains (i ) and (k) of different size are con-
sidered,κ is simply the curvature of the grain boundary,
with the center in the smaller grain. For a pair of spher-
ical grains of radiir i , rk which are in contact through
a given dihedral angle, the boundary must be tangent,
for equilibrium, to the bisector of the dihedral angle,
so its curvature is, approximately, the mean of the sur-
face curvatures 2/ri and−2/rk. In the final stage of
densification the dominant grain shape is normally that
of a sphere-inscribed polyhedron. In this way the above
conclusion applies, as a reasonable approximation, also
to polyhedrical grains. Accordingly,

p ≈ γb

(
1

ri
− 1

rk

)
(27)

In Equation 27γb is a constant depending on the nature
of the grain boundary. This argument was discussed
in a previous work [16] by two of the present authors.

They pointed out that, in a two-particle system, an ex-
cess of vacancies in the grain boundary regions or at
free surfaces, due to the elastic compliance of the sys-
tem, generates a real tensile membrane stressσb in the
boundary, which must be considered instead ofγb. This
membrane stress is not a constant, but depends on the
geometry of the system. For a two-particle modelσb is
evaluated in the Appendix as a function of the particle
radii and the sintering stress (Equation A.4). In such a
case, replacingγb with σb in Equation 27, the boundary
velocity turns out to be

v = k(T)

db

6

2

(
1

r 2
i

− 1

r 2
k

)
ri rk(1− εd) (28)

Calculating the rate of exchanged volume dVi→ k /dt
as the product ofv through the boundary area
πa2

ik = 2πεdri rk, the volume exchanged by a pair of
particles turns out to be

dVi→k

dt
= πk(T)6

db

(
r 2

k − r 2
i

)
εd(1− εd) (29)

where6 can be regarded as the driving force for grain
growth, which, in this case, would be the same as for
densification. Equation 29, introduced in Equation 2,
yields the set of evolution equations

dri

dt
= −k(T)6

4db
εd(1− εd)

∑
k

ni
k

(
r 2

k

r 2
i

− 1

)
(30)

being again a special case of Equation 5 withψ(ri ,
rk)= r 2

k − r 2
i and g(εd)= εd(1− εd). Eliminating the

time variable through Equation 9 and defining the in-
trinsic timex by Equation 15, Equation 30 becomes:

dri

dx
= − r 2

4db

k(T)

kd(T)

∑
k

ni
k

(
r 2

k

r 2
i

− 1

)
(31)

Comparison of Equation 31 with Equation 23 shows
that the substitution of the concept of surface tension
with that of membrane stress produces a different de-
pendence on the radii. In fact, the use of Equation 27
would lead to a set of differential equations where
ψ(ri , rk) is the same as in Equation 23. It has been
observed that, for some systems, grain growth and den-
sification have the same activation energy [17]. In such
a case Equation 31 can be furtherly simplified by as-
sumingk(T)= kd(T).

4. Geometrical models for numerical solution
Fig. 2 illustrates three geometrical cluster models (a,
b, c) considered for numerical solutions. The particles
are numbered according to the size they are expected
to assume in the course of the process: particles with
the same number will remain equal in size on account
of symmetry.

Model (a) is a two-dimensional arrangement of 19
closed-packed spheres, initially of equal radiusro, ex-
cept the central sphere which is smaller (with radius
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Figure 2 Models for numerical simulation: model a (2-d):N= 19;
r1o= 0.9ro; r2o= r3o= r4o= ro model b (3-d): N= 27; r1o= 0.9
ro; r2o= r3o= r4o= ro; model c (3-d):N= 27;r1o= 0.8ro; r2o= 0.9ro;
r3o= r4o= ro.

r1o= 0.9ro). At the beginning of the process matter
will flow from particle (1) to the nearest neighbours (2)
which, in turn, begin to receive atoms also from sort
(3), and so on. Consequently, the initial heterogeneity
spreads instantly to the whole cluster population. The
symmetry of the system conserves the sorting through-
out the process.

Models (b) and (c) represent a 3-d cubic packing
of 27 spheres, respectively with two and with three
sorts of initial radii, preciselyr1o= 0.9ro in case (b)
andr1o= 0.8ro, r2o= 0.9ro in case (c). The evolution
of the system proceeds as in the foregoing instance.

For each of the three models numerical solutions of
both Equation 23 (initial/intermediate stage of sinter-
ing) and Equation 31 (intermediate/final densification
setage) were obtained using the Runge-Kutta method,
under the following positions:

i. The mean radiusr has been assumed, in a first
approximation, constantly equal toro;

ii. the ratioro/db has been given the value of 100 in
all cases;

iii. Equation 31 were solved in the special case of
k(T)= kd(T).

The constant in Equation 23 is difficult to evaluate
without reference to a particular material. A conven-
tional value of 10 has been therefore adopted. The way
the solution is influenced by the value of the constant
will emerge in the discussion.

5. Results and discussion
Coarsening, as predicted by the general theory, is a step-
wise phenomenon, each step being terminated when-
ever a sort of particles is incorporated in a neighbouring
larger sort. The following step is then calculated, elim-
inating the incorporated particles from the cluster and
assuming as new starting radii of the remaining sorts
the values obtained at the end of the foregoing step. The
whole process is terminated, in ideal conditions, when a
sole sort of particles is left. The values of intrinsic time
corresponding to the end of these steps form a kind of
eigenvalue spectrum, which is proper of a given sys-
tem. In Table I the data of numerical calculations are
summarised for all examined models. In Fig. 3, where
the radii of the particles are plotted vs. intrinsic timex,
the evolution of models (a) and (b), simulating the be-
haviour of systems in the initial/intermediate stage of
sintering due to vapour transport, can be followed. In

Figure 3 Evolution of particle radii from numerical simulation (ini-
tial/intermediate stage of sintering): above model a; beneath model b.

Figure 4 Evolution of mean particle radius from numerical simulation
(initial/intermediate stage of sintering): above model a; beneath model b.

Fig. 4 the corresponding behaviour of the mean radius
r is shown for both models. The evolution of the radii
is quite similar in the 2-d and the 3-d cluster, the latter
being only a bit faster (see values ofx in Table I). This
is an indication that, at least in small regular clusters,
the type and dimensionality of particle packing is not
expected to have critical influence on the coarsening
history. The mean radius decreases slightly within a
single step, but at the end of each step undergoes a pos-
itive jump through a ratioNi /(Ni − ni ) (being Ni the
total number of particles in the cluster before annichi-
lation of thei -th sort), just as predicted by the theory.

The influence of the diffusion mechanism can be ob-
served comparing the plots of Figs 3b, 4b with those
of Fig. 5, simulating the evolution of model (b) in
the intermediate/final stage of sintering. The values as-
sumed by the radii at the end of each step are nearly
the same in both cases. This would imply: more steps,
more coarsening. As thex variable is related to the
densification of the system, systems which undergo the
same densification would coarsen more when the step
duration is shorter, while, for the same step duration,
systems which densify the more may exhibit the more
of coarsening. The reason for this behaviour is volume
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TABLE I Data of numerical simulation

Model a (initial/intermediate stage)
Step number Initial particle size (relative toro) Mean radius Intrinsic time

r 1 r 2 r 3 r 4 r x
I 0.9 1.0 1.0 1.0 0.975 0.0157
II 0 1.046 0.994 0.998 1.013 0.0621
III 1.252 0 1.050 1.157 0.104
IV 1.461 0 1.461

Model a (intermediate/final stage)
Step number Initial particle size (relative toro) Mean radius Intrinsic time

r 1 r 2 r 3 r 4 r x
I 0.9 1.0 1.0 1.0 0.97 0.0036
II 0 1.048 0.993 0.997 1.01 0.0128
III 1.264 0 1.033 1.148 0.0197
IV 1.461 0 1.461

Model b (initial/intermediate stage)
Step number Initial particle size (relative toro) Mean radius Intrinsic time

r 1 r 2 r 3 r 4 r x
I 0.9 1.0 1.0 1.0 0.975 0.0157
II 0 1.049 0.993 1.001 1.014 0.0543
III 1.334 0 1.160 1.247 0.905
IV 1.645 0 1.645

Model b (intermediate/final stage)
Step number Initial particle size (relative toro) Mean radius Intrinsic time

r 1 r 2 r 3 r 4 r x
I 0.9 1.0 1.0 1.0 0.97 0.0036
II 0 1.053 0.991 1.001 1.015 0.0111
III 1.342 0 1.152 1.247 0.0167
IV 1.645 0 1.645

Model c (initial/intermediate stage)
Step number Initial particle size (relative toro) Mean radius Intrinsic time

r 1 r 2 r 3 r 4 r x
I 0.8 1.0 0.9 0.9 0.9 0.0076
II 0 1.067 0.870 0.904 0.947 0.0250
III 1.280 0 1.021 1.150 0.0470
IV 1.520 0 1.520

Model c (intermediate/final stage)
Step number Initial particle size (relative toro) Mean radius Intrinsic time

r 1 r 2 r 3 r 4 r x
I 0.8 1.0 0.9 0.9 0.9 0.00180
II 0 1.074 0.864 0.905 0.948 0.00545
III 1.289 0 1.009 1.149 0.00917
IV 1.520 0 1.520

Figure 5 Evolution of particle radii (above) and of mean radius (be-
neath) from numerical simulation (intermediate/final stage of sintering):
model b.

conservation. In fact, on account of Equation 13, the
grade of coarsening of a cluster of given composition
and size, expressed as the ratio of the average radius
r at a given step of the process to the initial average

radiusro, is approximately given by

r

ro
≈
(

N

Ni

)1/3

(32)

whereNi is the actual number of particles. The grade of
coarsening is, therefore, independent of the mechanism
of grain growth, but is determined exclusively by the
initial cluster microstructure.

On the opposite, it is the duration of the single step
that is influenced by the process, as indicated by the
plots. As the constants in the differential equations are
in some way arbitrary, it is important to investigate
this dependence analytically. In all examined models,
within the single step, where coarsening is continuous,
one of the particle radii decays dramatically to zero,
while the increase of the remaining radii is rather slow
(Figs 3 and 5). Then the eigenvaluexi , corresponding
to the instant when the particles of thei -th sort dis-
appear, can be calculated, as a first approximation by
integrating Equation 17 in the hypothesis that, during
the considered step, the only changing radius isri , while
the other radii remain constant and equal to the mean
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radiusr . Such an integration yields, in general

xi = xi−1+ 4πr6

0
∑

k ni
k

kd(T)

k(T)

∫ θi

o

θ2 dθ

ψ(θ )
(33)

whereθ = ri /r andθi = r (i−1)
i / r beingr (i−1)

i the value
of ri at the beginning of the step (or at the end of
the foregoing step). The summationvi =6kni

k is sim-
ply the number of contacts of each particle of the
i -th sort. In the simulation of grain growth in the
initial/intermediate stage of sintering (ψ(θ )= 1− θ ),
the result is:

xi = xi−1+ 6d

γsvi

kd(T)

kv(T)

[
ln

(
1

1− θi

)
− θi − θ

2
i

2

]
(34)

while, in the simulation for the intermediate/final stage,
whereψ(θ )= 1− θ2, one obtains

xi = xi−1+ 4db

r vi

[
1

2
ln

(
1+ θi

1− θi

)
− θi

]
(35)

Applying Equation 35 to model (b) and assuming for
simplicity θi ≈ r1o/ro= 0.9 for all steps, the values
x1= 0.0038,x2= 0.0095,x3= 0.0181 are calculated,
which represent a reasonable approximation to the ex-
act solution (Table I). Application to model (c) with
θ1= 0.8 for the first step andθi = 0.9 for the suc-
cessive steps, would yieldx1= 0.0020,x2= 0.0077,
x3= 0.0153, in excess with respect to the numerical
solution (Table I); assumingθi = 0.8 for all steps a bet-
ter estimation is obtained (x1= 0.0020, x2= 0.0050,
x3= 0.0090), an indication that in a multi-particle sys-
tem the ratio of smallest to largest radius tends to drive
the evolution independently of size of the other parti-
cles. Analogous conclusions apply also to the Ostwald
ripening simulation.

Following these results and according to Equations
34 and 35, three parameters are expected to influence
the duration of the coarsening steps:

i. the mean particle size of the cluster; in particular,
a fine-grained compact will undergo slower coarsening
than a coarser aggregate, while densification is faster:
this is true also of Ostwald ripening, because6 is nor-
mally inversely proportional tor [15, 16];

ii. the coordination number; a porous compact, with
low coordination numbers, will coarsen more slowly
than a dense compact;

iii. the ratio of smallest to largest radius, which plays
in this way the role of an order parameter of the system;
compacts with wide particle size distributions or with
bimodal distributions may coarsen more rapidly than
homogeneous systems.

The behaviour of an aggregate of clusters is, obvi-
ously, more complicate than that of a single cluster. In
the ideal situation of an aggregate of identical clusters,
coarsening would occur inside the single cluster, but
would stop at the cluster boundaries, because the par-
ticles in contact there, being always of the same size,
cannot exchange matter. The final result would be, cor-

respondingly, an aggregate of moderately larger grains,
all of one size. On the opposite, cluster heterogeneity (as
resulting, e.g., from inadequate powder mixing) tends
to spread coarsening from a cluster to another, leading
to an increased heterogeneity of the sintered compact,
as well as to a larger mean particle size. A promising
method to reduce the negative effects of coarsening in
a large aggregate, is employing agglomerate powders.
The available technology (spray drying, etc.) permits
to obtain agglomerates with very narrow size distribu-
tions. The presence of small size grains inside a single
aggregate enhances densification, while clustering re-
duces coarsening for the reasons said above. Such con-
clusions are confirmed in a study by Lange [7], who
followed the microstructure evolution of a pair of ZrO2
single crystals and of two polycrystalline ZrO2-3Y2O3
particles of approximately the same size, at a tempera-
ture of 1400◦C for 12 hours. The behaviour of the two
samples is quite different. The single-crystal particles
undergo relatively small center approach and growth. In
the polycrystalline pair densification of the micrograins
leads to a nearly complete center approach between the
two particles after 12 h, while coarsening remains con-
fined to within the clusters. Moreover, if the evolution
of the interior grains is followed, some grains are found
to disappear, while others grow in the iniital stage (from
0.3 h to 4 h) and become smaller in the final stage, as it is
the case e.g. for particle 3 in all the models (see Table I
and Figs 3 and 5). Also, the ratio of final to initial radii
of grains undergoing coarsening (about 1.5–2) can be
compared with the predictions of the present model, as
applied to relatively small clusters.

Concerning the validity of semi-empirical laws as
Equation 1, it is clear from the plots of the average
radii (Fig. 4) that such laws are not adequate to de-
scribe the behaviour of small clusters. In larger sys-
tems, however, where the number of steps may be very
high and all steps have in the mean the same duration,
it is reasonable to suppose that the number of parti-
cles surviving a given step is inversally proportional
to the elapsed intrinsic time (plus an initial constant
xo related to the initial particle number). Then, from
Equation 32, the average radius would be proportional
to (x+ xo)1/3, independently of the mechanism of grain
growth. In such a case the features of the process will
determine the true dependence ofr on real time through
the correspondence of Equation 16.

6. Conclusions
In coarsening of particle clusters, there are:

i. aspects which depend only on the microstruc-
ture of the system (i.e. particle shape, size composition,
topological parameters, etc.);

ii. apects which are influenced by the local mecha-
nisms of diffusion which drive grain growth and densi-
fication.

The aspects which depend only on the microstructure
are:

i.1. the process has a stepwise evolution, determined
by the disappearing of the particles which are at each
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step the smallest, the number of steps being fixed by
the initial microstructure;

i.2. the average particle radius decreases continu-
ously through any step where the total number of parti-
cles is conserved and undergoes a positive jump at the
end of each step;

i.3. the standard deviation of the size population
may increase continuously within a single step, but de-
creases at the end of each step;

i.4. the average particle radius is (approximately) in-
versely proportional to the cubic root of the total num-
ber of particles present in the cluster.

The duration of the steps depends on both microstruc-
tural parameters (average particle radius, coordination
number of smallest particles, and an order parameter
defined as the ratio of the largest to the smallest grain)
and on the diffusion mechanisms whereby densification
and grain growth are produced, namely

ii.1. on the ratio between the driving forces of, re-
spectively, the densification and the grain growth mech-
anism;

ii.2. on the ratio between the kinetic factors of the
two diffusion mechanisms

iii.3. on the ratio between the kinetic functions of
densification and grain growth, which scales the intrin-
sic time.

Appendix
For a model of two spherical particles of radiiri , rk

connected by a circular grain boundary of radiusaik , the
boundary membrane stressσb was shown to be related
to the the mean compressive stress6 acting on the
boundary (assumed as thesintering stress) [16] by

σb = 6aik
sin(βi + βk)

2 sinβi sinβk
(A.1)

whereβi , βk are the two parts into which the dihedral
angle at the neck is divided by the contact plane, so that
aik = ri sinβi = rk sinβk.

The linear shrinkage associated with densification is
(in absolute value)

εd = {ri (1− cosβi )+ rk(1− cosβk)}
(ri + rk)

(A.2)

and, for relatively smallεd, can be approximated by
εd≈ 0.5a2

ik / ri rk. To the same order of approximation,

sin(βi + βk) ≈
(

aik

ri
+ aik

rk

)(
1− 0.5a2

ik

r i rk

)
(A.3)

Substituting Equation A.2 and A.3 in Equation A.1, one
obtains

σb ≈ 6

2

(
1

ri
+ 1

rk

)
ri rk(1− εd) (A.4)

which shows how the grain boundary membrane stress
depends on the geometry of the contacting particles.
The dependence ofσb on the degree of densification
is practically negligible, as normallyεd is much lower
than unity.
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